
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 11 – Program Design

www.umbc.edu

Last Class We Covered

• Functions

–Returning values

–Matching parameters

–Matching return assignments

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about modularity and its benefits

• To see an example of breaking a large
program into smaller pieces

– Top Down Design

• To introduce two methods of implementation

– Top Down and Bottom Up

4

www.umbc.edu5

Modularity

www.umbc.edu

Modularity

• A program being modular means that it is:

• Made up of individual pieces (modules)

– That can be changed or replaced

– Without affecting the rest of the system

• So if we replace or change one function, the
rest should still work, even after the change

6

www.umbc.edu

Modularity

• With modularity,
you can reuse and
repurpose your code

• What are some pieces of code you’ve
had to write multiple times?

– Getting input between some min and max

– Using a sentinel loop to create a list

– What else?
7 Image from pixabay.com

www.umbc.edu

Functions and Program Structure

• So far, functions have been used as a
mechanism for reducing code duplication

• Another reason to use functions is to make
your programs more modular

• As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs

8

www.umbc.edu

Functions and Program Structure

• One option to handle this complexity is to
break it down into smaller pieces

• Each piece makes sense on their own

• You can easily combine them together to form
the complete program

www.umbc.edu

Complex Problems

• If we only take a problem in one piece, it may
seem too complicated to even begin to solve

–A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

–Creating a video game from scratch

10

www.umbc.edu11

Top Down Design

www.umbc.edu

Top Down Design

• Computer programmers often use a divide
and conquer approach to problem solving:

– Break the problem into parts

– Solve each part individually

– Assemble into the larger solution

• One example of this technique is
known as top down design

12

www.umbc.edu

Top Down Design

• Breaking the problem down into pieces makes it
more manageable to solve

• Top-down design is a process in which:

– A big problem is broken down into small sub-problems

• Which can themselves be broken down into even
smaller sub-problems

–And so on and so forth…

13

www.umbc.edu

Top Down Design: Illustration

• First, start with a
clear statement of
the problem or
concept

• A single big idea

14

Video
Game

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

15

Video
Game

Story Graphics Engine

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

• If any of those parts
can be further
broken down, then
the process
continues…

16

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

Collision

www.umbc.edu

Top Down Design: Illustration

• And so on…

17

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

CollisionCharacters

Objects

www.umbc.edu

Top Down Design: Illustration

• Your final design
might look like this
chart, which shows
the overall structure
of the smaller pieces
that together make
up the “big idea” of
the program

18

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

CollisionCharacters

Objects

www.umbc.edu

Top Down Design: Illustration

• This is like an
upside-down
“tree,” where
each of the
nodes represents
a single process
(or a function)

19

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

CollisionCharacters

Objects

www.umbc.edu

Top Down Design: Illustration

• The bottom nodes
are “leaves” that
represent pieces
that need to be
developed

• They are then
recombined to
create the solution to
the original problem

20

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

CollisionCharacters

Objects

www.umbc.edu

Analogy: Paper Outline

• Think of it as an outline for a paper you’re
writing for a class assignment

• You don’t just start writing things down!

– You come up with a plan of the important points
you’ll cover, and in what order

– This helps you to formulate your thoughts as well

21

www.umbc.edu22

Implementing a Design in Code

www.umbc.edu

Bottom Up Implementation

• Develop each of the
modules separately

– Test that each one
works as expected

• Then combine into
their larger parts

– Continue until the
program is complete

23

Video
Game

Story Graphics Engine

Lighting Models Textures Rendering

CollisionCharacters

Objects

www.umbc.edu

Bottom Up Implementation

• To test your functions, you will probably use
main() as a (temporary) test bed

– You can even call it testMain() if you want

• Call each function with different test inputs

– How does function ABC handle zeros?

– Does this if statement work right if XYZ?

– Ensure that functions “play nicely” together

24

www.umbc.edu

Top Down Implementation

• Sort of the “opposite” of bottom up

• Create “dummy” functions that fulfill the
requirements, but don’t perform their job

– For example, a function that is supposed to
take in a list of grades and return the average;
it takes in the list, but then simply returns a 1

• Write up a “functional” main() that calls
these dummy functions

– Helps to pinpoint other functions you may need
25

www.umbc.edu

Which To Choose?

• Top down? Or bottom up?

• It’s up to you!

–As you do more programming, you will
develop your own preference and style

• For now, just use something – don’t code up
everything at once without testing anything!

26

www.umbc.edu

Announcements

• Project 1 is out on Blackboard now

– Must use the design provided in class

– Design due by Saturday (March 11th)

– Project due by Friday (March 17th) at 8:59:59 PM

• Midterm will be next week

– We’ll have an in-class review on Monday/Tuesday

– Review worksheet only available in class!

27

