CMSC201
Computer Science | for Majors

Lecture 11 — Program Design

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu

Last Class We Covered

* Functions
— Returning values
—Matching parameters
— Matching return assignments

2 www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Today’s Objectives

* To learn about modularity and its benefits

* To see an example of breaking a large
program into smaller pieces

—Top Down Design

* To introduce two methods of implementation
— Top Down and Bottom Up

4 www.umbc.edu

Modularity

5 www.umbc.edu

Modularity

* A program being modular means that it is:

 Made up of individual pieces (modules)
— That can be changed or replaced
— Without affecting the rest of the system

* So if we replace or change one function, the
rest should still work, even after the change

6 www.umbc.edu

Modularity

* With modularity,
you can reuse and
repurpose your code

 What are some pieces of code you've
had to write multiple times?
— Getting input between some min and max

— Using a sentinel loop to create a list
— What else?

7 Image from pixabay.com

www.umbc.edu

Functions and Program Structure

e So far, functions have been used as a
mechanism for reducing code duplication

e Another reason to use functions is to make
your programs more modular

e As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs

8 www.umbc.edu

Functions and Program Structure

* One option to handle this complexity is to
break it down into smaller pieces

* Each piece makes sense on their own

* You can easily combine them together to form
the complete program

www.umbc.edu

Complex Problems

* |f we only take a problem in one piece, it may
seem too complicated to even begin to solve

— A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

— Creating a video game from scratch

10 www.umbc.edu

Top Down Design

11 www.umbc.edu

Top Down Design

 Computer programmers often use a divide
and conquer approach to problem solving:

— Break the problem into parts
— Solve each part individually
— Assemble into the larger solution

* One example of this technique is
known as top down design

12 www.umbc.edu

Top Down Design

* Breaking the problem down into pieces makes it
more manageable to solve

e Top-down design is a process in which:
— A big problem is broken down into small sub-problems

 Which can themselves be broken down into even
smaller sub-problems

—And so on and so forth...

13 www.umbc.edu

Top Down Design: lllustration

e First, start with a [Video]
clear statement of —
the problem or
concept

* Asingle big idea

14

www.umbc.edu

Top Down Design: lllustration

 Next, break it down [Video]
into several parts 2ame

(on) (some) ()

15 www.umbc.edu

Top Down Design: lllustration

 Next, break it down
into several parts

* |f any of those parts - - -
can be further
broken down, then ---—-
the process _-

continues...

16 www.umbc.edu

Top Down Design: lllustration

e And so on...

=)

(e) (o]

2 | R
o @8
=

17 www.umbc.edu

Top Down Design: lllustration

* Your final design

18

might look like this -

chart, which shows - - -
the overall structure

of the smaller pieces ---_-
that together make

up the “big idea” of _- _-

the program

www.umbc.edu

 This is like an

19

Top Down Design: lllustration

upside-down
“tree,” where
each of the
nodes represents -
a single process
(or a function)

www.umbc.edu

Top Down Design: lllustration

e The bottom nodes

20

are “leaves” that
represent pieces
that need to be
developed

They are then
recombined to
create the solution to
the original problem

[

Video]
Game

Story

[Graphics] [Engine]

Lighting

[:NMdds][1émums]

Rendering

a4 N
Characters
§ J

Collision

Objects

www.umbc.edu

Analogy: Paper Outline

* Think of it as an outline for a paper you’re
writing for a class assighnment

* You don’t just start writing things down!

— You come up with a plan of the important points
you’ll cover, and in what order

— This helps you to formulate your thoughts as well

21 www.umbc.edu

Implementing a Design in Code

22 www.umbc.edu

Bottom Up Implementation

* Develop each of the
modules separately

— Test that each one
works as expected

e Then combine into

their larger parts _-
(ot

— Continue until the
program is complete

23 www.umbc.edu

Bottom Up Implementation

* To test your functions, you will probably use
main () as a (temporary) test bed

— You can even call it testMain () if you want

e Call each function with different test inputs

— How does function ABC handle zeros?
— Does this 1f statement work right if XYZ?

— Ensure that functions “play nicely” together

24 www.umbc.edu

Top Down Implementation

* Sort of the “opposite” of bottom up

* Create “dummy” functions that fulfill the
requirements, but don’t perform their job

— For example, a function that is supposed to
take in a list of grades and return the average;
it takes in the list, but then simply returnsa 1

* Write up a “functional” main () that calls
these dummy functions

— Helps to pinpoint other functions you may need

25 www.umbc.edu

Which To Choose?

 Top down? Or bottom up?

* |t's up to you!

— As you do more programming, you will
develop your own preference and style

* For now, just use something — don’t code up
everything at once without testing anything!

26 www.umbc.edu

Announcements

* Project 1is out on Blackboard now
— Must use the design provided in class
— Design due by Saturday (March 11th)
— Project due by Friday (March 17th) at 8:59:59 PM

 Midterm will be next week
— We'll have an in-class review on Monday/Tuesday
— Review worksheet only available in class!

27 www.umbc.edu

